INTRODUCTION

The Master of Science in Environmental Engineering is an online degree program that educates and prepares the future leaders in environmentally related fields. Its structure is based on a cohort model in which students move through the two-year curriculum as a group. The course schedule is based on four 16-week semesters and one summer session. The online format creates an environment where much learning occurs through completion of individual and team projects and analysis of case studies.

LEARNING GOALS AND STUDENT LEARNING OUTCOMES

In addition to the learning goals and student learning outcomes described in the Civil and Environmental Engineering department, this program provides students with practical information and technical knowledge on contemporary environmental topics and issues, including: potable water treatment; wastewater treatment and disposal; water reclamation and reuse; stormwater runoff management and treatment; solid and hazardous waste management; contaminated groundwater and soil remediation; landfill design; air pollution control engineering; global warming issues; and sustainable development.

MASTER OF SCIENCE IN ENVIRONMENTAL ENGINEERING
(30 UNITS)

The overall objective of this program is to provide students with practical information and technical knowledge on contemporary environmental topics and issues. Students will train for consulting companies, industries or as officials for local governments, as well as for state or federal regulatory agencies. At the end of the program, students will be prepared to sit for the professional engineering exam in environmental engineering.

Admission Requirements

Students must meet the CSU requirements for admission to a master’s degree program. Please consult the Graduate Admissions section in this catalog for complete information. In addition, students with non-engineering baccalaureate degrees will be considered if they have completed: (1) mathematics through differential equations; (2) two semesters of college chemistry; (3) two semesters of college physics; (4) fluid mechanics; and (5) one undergraduate-level environmental engineering course (these deficiency courses may be taken concurrently while conditionally admitted into the program).
Program Completion Requirements

Continuation and completion of the program requires:
- Registration, attendance and successful completion of the virtual initial orientation and midpoint symposium
- The program is based on a cohort model. If circumstances force a student to fall out of the original cohort schedule, the student will be permitted to continue in the program, but will default to the next cohort cycle, provided the student remains in good standing
- Accessibility issues – Special accommodations for disabled students will be made on an individual basis, as needed in compliance with the CSUF Catalog (online catalog at Disabled Services Handbook). Please contact the instructor and the program coordinator if this applies to you
- Continuous enrollment in the program is required. There is a five-year completion time limit for the degree. For more information on the campus’ continuous enrollment and leaves of absence, consult Academic Programs at Graduate Academic Policies

Study Plan

The study plan consists of 30 semester units of coursework that must be completed with a minimum overall grade-point average of 3.0.

Core Environmental Engineering Classes
EGCE 570 Fate and Transport of Chemicals in the Environment (3)
EGCE 571 Hydraulics and Hydrology for Environmental Engineers (3)
EGCE 572 Water Supply, Treatment, and System Design (3)
EGCE 573 Environmental Engineering Practices and Project Management (3)

Environmental Engineering Applications Classes
EGCE 481 Remediation of Contaminated Soil and Groundwater (3)
EGCE 482 Wastewater Treatment and Water Reclamation (3)
EGCE 515 Solid Waste Management, System Design, and Sustainability (3)
EGCE 546 Surface Water Pollution and Control (3)
EGCE 583 Air Pollution Control Engineering (3)

Capstone Research Project
EGCE 597 Graduate Project (3)